

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

BREED MIX

Poodle (Small) : 56.8%
Poodle (Standard) : 43.2%

GENETIC STATS

Predicted adult weight: **33 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-15943058 Swab number: 31221010007454

BREED MIX BY CHROMOSOME

Our advanced test identifies from where Captain inherited every part of the chromosome pairs in his genome.

Breed colors:					
		Poodle (Small)	Poodle (Standard)		
1		2	3	4	
5		6	7	8	
9		10	11	12	
13		14	15	16	
17		18	19	20	
21	_	22	23	24	
25		26	27	28	
29		30	31	32	
33		34	35	36	
37	_	38			

"CAPTAIN" TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report

Alternative Names Toy Poodle, Miniature Poodle

Fun Fact

Although Toy Poodles are the most popular dog breed in Japan, Poodles as a group are the eight most popular breed in the US, with miniature poodles being the most common variety. Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

POODLE (SMALL)

Miniature and toy poodles are varieties of the poodle breed which originated in Germany in the 15th century. Unlike the larger standard poodle (>15 inches tall), these small poodles were not developed for hunting---except for truffles!---and were generally used as lap dogs and companions. Small poodles are frequently used to create designer dogs like Schnoodles and Maltipoos with low-shedding, hypoallergenic coats. All poodles are highly intelligent and energetic, and need daily exercise and stimulation. They are overall healthy dogs, although heritable eye disease, epilepsy and allergies are relatively common, and toy poodles also have a heightened risk of accidents/trauma due to their small size.

RELATED BREEDS

Poodle (Standard) Sibling breed

Maltese Cousin breed

Havanese Cousin breed

Bichon Frise Cousin breed

"CAPTAIN" TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

POODLE (STANDARD)

The Standard Poodle is a popular, water-loving dog used for centuries as a bird dog and popular pet. Poodles were established in Germany by the 15th century. Oddly enough, they are the national dog breed of France, and they were the most popular breed of dog in the United States throughout the 1960s and 70s. They're still quite popular today, owing to their intelligence, trainability, and non-shedding coats. Although well-known for their fancy fur, they're one of the most intelligent breeds of dog and require a lot of exercise and stimulation.

Fun Fact

From 1989 to 1991, John Suter raced a team of Poodles in the Iditarod. Although his teams placed in the back half of the pack, he managed to win \$2,000 in prize money before retiring his poodle team. The Iditarod has since changed its rules to specify that only northern dog breeds can compete.

Poodle (Toy) Sibling breed

Poodle (Miniature) Sibling breed

Maltese Cousin breed

Havanese Cousin breed

Bichon Frise Cousin breed

Rembark

RELATED BREEDS

TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

MATERNAL LINE

Through Captain's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B49

Part of the large B1 haplogroup, this haplotype occurs most commonly in Poodles. It's a rare find!

TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

PATERNAL LINE

Through Captain's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1b

For most of dog history, this haplogroup was probably quite rare. However, a couple hundred years ago it seems to have found its way into a prized male guard dog in Europe who had many offspring, including the ancestors of many European guard breeds such as Doberman Pinchers, St. Bernards, and Great Danes. Despite being rare, many of the most imposing dogs on Earth have it; strangely, so do many Pomeranians! Perhaps this explains why some Poms are so tough, acting like they're ten times their actual size! This lineage is most commonly found in working dogs, in particular guard dogs. With origins in Europe, it spread widely across other regions as Europeans took their dogs across the world.

HAPLOTYPE: Ha.7

Part of the A1b haplogroup, this haplotype is found in village dogs from Lebanon and Indonesia. Among breeds, it is also found in Miniature Schnauzer and Toy Poodle.

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive e allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the Em allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Puq). Dogs with no copies of Em but one or two copies of the Eg allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus K^{B} allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $\mathbf{k}^{\mathbf{y}}\mathbf{k}^{\mathbf{y}}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as K^Bk^y may be brindle rather than black or brown.

More likely to have a patterned haircoat $(\mathbf{k}^{\mathbf{y}}\mathbf{k}^{\mathbf{y}})$

Can have a melanistic mask (E^mE)

RESULT

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any light hair likely yellow or tan (Intermediate Red Pigmentation)

RESULT

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Black/Brown and tan coat color pattern (a^ta^t)

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Dark areas of hair and skin are not lightened (DD)

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Black or gray hair and Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. skin (BB) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan

face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.

Not saddle tan patterned (II)

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely flash, parti, piebald, or extreme white (spsp)

embk.me/texomasrscaptainmarble

DNA Test Report

Test Date: July 23rd, 2024

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

RESULT

One merle allele; may

express merle (M*m)

alleles. At the time this

dog was genotyped Embark we could not

distinguish all of the

possible alleles.

Note: This locus

includes several

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Panda White Spotting

Panda White Spotting originated in a line of German Shepherd Dogs and causes a mostly symmetrical white spotting of the head and/or body. This is a dominant variant of the KIT gene, which has a role in pigmentation.

Dogs with one copy of the I allele will exhibit this white spotting. Dogs with two copies of the I allele have never been observed, as two copies of the variant is suspected to be lethal to the developing embryo. Dogs with the **NN** result will not exhibit white spotting due to this variant.

Not expected to display Panda pattern (NN)

RESULT

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely furnished (mustache, beard, and/or eyebrows) (FF)

RESULT

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

RESULT

Likely long coat (LhLh)

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, areLikely light sheddingheavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus(CT)and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2(CT)(the furnishings gene) tend to be low shedders regardless of their genotype at this gene.(CT)

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, **Likely curly coat (TT)** but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth
 shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and
 Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely
 to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has
 never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that
 this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

RESULT

Likely medium or long

muzzle (CC)

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

DNA Test Report

Blue Eye Color (ALX4)

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Chondrodysplasia (Chr. 18 FGF4 Retrogene)

Dogs with one or two copies of the I allele will exhibit a short-legged trait known as chondrodysplasia (CDPA). CDPA is a breed-defining characteristic of many breeds exhibiting the "short-legged, longbodied" appearance known as disproportionate dwarfism, including the corgi, dachshund and basset hound. The impact of the I allele on leg length is additive. Therefore, dogs with the II result display the largest reduction in leg length. Dogs with the **NI** genotype will have an intermediate leg length, while dogs with the **NN** result will not exhibit leg shortening due to this variant. Breeds that display disproportionate dwarfism also frequently inherit a genetic variant known as the chondrodystrophy (CDDY) variant. The CDDY variant also shortens legs (in a less significant amount than CDPA) but, secondarily, increases the risk of Type I Intervertebral Disc Disease (IVDD). Test results for CDDY are listed in this dog's health testing results under "Intervertebral Disc Disease (Type I)". In contrast, the CDPA variant has NOT been shown to increase the risk of IVDD.

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the

duplication (Dup) are more likely to have at least one blue eye. Some dogs with the duplication may have

only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as

Not indicative of chondrodysplasia (normal leg length) (NN)

RESULT

Less likely to have blue eyes (NN)

Back Muscling & Bulk, Large Breed (ACSL4)

predictive as direct tests of the mutation in some lines.

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Smaller (II)
The I allele is associated with smaller body size.		
Body Size (IGFR1)		Intermediate (GA)
The A allele is associated with smaller body size.		
Body Size (STC2)		Smaller (AA)
The A allele is associated with smaller body size.		Sindher (AA)
Body Size (GHR - E191K)		Larger (GG)
The A allele is associated with smaller body size.		Larger (00)
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body size.		

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
RAITS: PERFORMANCE		
TRAIT		RESUL
Altitude Adaptation (EPAS1)		
found at high elevations. Dogs with at leas	y tolerant of low oxygen environments (hypoxia), t one A allele are less susceptible to "altitude sic s from high altitude areas such as the Tibetan Ma	tolerance (GG)
Appetite (POMC)		
dogs with no copies of the mutation (NN), likely to have high food motivation, which o percentage, and be more prone to obesity.	primarily in Labrador and Flat Coated Retrievers. O dogs with one (ND) or two (DD) copies of the mu can cause them to eat excessively, have higher b Read more about the genetics of POMC, and lead tps://embarkvet.com/resources/blog/pomc-dog	ntation are more Normal food body fat motivation (NN) rn how you can

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

HEALTH REPORT

How to interpret Captain's genetic health results:

If Captain inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Captain for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 274 genetic health risks we analyzed, we found 1 result that you should learn about.

Increased risk results (1)

Intervertebral Disc Disease (Type I)

Clear results

Breed-relevant (6)

Other (266)

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Captain, and may influence his chances of developing certain health conditions.

O Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)	Increased risk
O Degenerative Myelopathy, DM (SOD1A)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)	Clear
Neonatal Encephalopathy with Seizures, NEWS (ATF2)	Clear
Osteochondrodysplasia (SLC13A1, Poodle Variant)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
⊘ Von Willebrand Disease Type I, Type I vWD (VWF)	Clear

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Captain. Review any increased risk or notable results to understand his potential risk and recommendations.

2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Sernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
 Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant) 	Clear

TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
⊘ Canine Multiple System Degeneration (SERAC	1 Exon 4, Chinese Crested Variant)	Clear
⊘ Canine Multiple System Degeneration (SERAC	1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality (YARS	2)	Clear
Centronuclear Myopathy, CNM (PTPLA)		Clear
🔗 Cerebellar Hypoplasia (VLDLR, Eurasier Varian	t)	Clear
🔗 Chondrodystrophy (ITGA10, Norwegian Elkhou	nd and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20, Nova	a Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, Nova Scotia D	ouck Tolling Retriever Variant)	Clear
Ocbalamin Malabsorption (CUBN Exon 8, Bea	le Variant)	Clear
Ocbalamin Malabsorption (CUBN Exon 53, Bor	der Collie Variant)	Clear
Ocollie Eye Anomaly (NHEJ1)		Clear
Omplement 3 Deficiency, C3 Deficiency (C3)		Clear
Ongenital Cornification Disorder (NSDHL, Ch	huahua Variant)	Clear
Ongenital Dyserythropoietic Anemia and Pol	ymyopathy (EHPB1L1, Labrador Retriever Vari	ant) Clear
🔗 Congenital Hypothyroidism (TPO, Rat, Toy, Hai	rless Terrier Variant)	Clear
Ongenital Hypothyroidism (TPO, Tenterfield T	errier Variant)	Clear
Ongenital Hypothyroidism with Goiter (TPO I	ntron 13, French Bulldog Variant)	Clear
Ongenital Hypothyroidism with Goiter (SLC5,	45, Shih Tzu Variant)	Clear

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
Ongenital Macrothrombocytopenia (TUBB	1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
🔗 Congenital Muscular Dystrophy (LAMA2, Ita	lian Greyhound)	Clear
Ongenital Myasthenic Syndrome, CMS (CC	DLQ, Labrador Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (CC	DLQ, Golden Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (CF	IAT, Old Danish Pointing Dog Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (CF	IRNE, Jack Russell Terrier Variant)	Clear
Ongenital Stationary Night Blindness (LRI	Γ3, Beagle Variant)	Clear
Ongenital Stationary Night Blindness (RPE	65, Briard Variant)	Clear
Ocpper Toxicosis (Accumulating) (ATP7B)		Clear
Ocpper Toxicosis (Attenuating) (ATP7A, Lab	rador Retriever)	Clear
Ocpper Toxicosis (Attenuating) (RETN, Labr	ador Retriever)	Clear
🔗 Craniomandibular Osteopathy, CMO (SLC37	A2)	Clear
🔗 Craniomandibular Osteopathy, CMO (SLC37	A2 Intron 16, Basset Hound Variant)	Clear
Orstinuria Type I-A (SLC3A1, Newfoundland	Variant)	Clear
🔗 Cystinuria Type II-A (SLC3A1, Australian Cat	tle Dog Variant)	Clear
🔗 Cystinuria Type II-B (SLC7A9, Miniature Pins	scher Variant)	Clear
Oarier Disease (ATP2A2, Irish Terrier Variant	:)	Clear
Oay Blindness (CNGB3 Deletion, Alaskan Ma	alamute Variant)	Clear

TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
Day Blindness (CNGA3 Exon 7, German	Shepherd Variant)	Clear
Day Blindness (CNGA3 Exon 7, Labrador	r Retriever Variant)	Clear
Day Blindness (CNGB3 Exon 6, German	Shorthaired Pointer Variant)	Clear
O Deafness and Vestibular Syndrome of D	Dobermans, DVDob, DINGS (MYO7A)	Clear
Oemyelinating Polyneuropathy (SBF2/	MTRM13)	Clear
Oental-Skeletal-Retinal Anomaly (MIA3	B, Cane Corso Variant)	Clear
O Iffuse Cystic Renal Dysplasia and Hep	patic Fibrosis (INPP5E Intron 9, Norwich Terr	ier Variant) Clear
Dilated Cardiomyopathy, DCM (RBM20,	Schnauzer Variant)	Clear
Dilated Cardiomyopathy, DCM1 (PDK4, I	Doberman Pinscher Variant 1)	Clear
Oilated Cardiomyopathy, DCM2 (TTN, D	oberman Pinscher Variant 2)	Clear
Disproportionate Dwarfism (PRKG2, Do	go Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FAM83H	Exon 5)	Clear
Oystrophic Epidermolysis Bullosa (COL	7A1, Central Asian Shepherd Dog Variant)	Clear
Oystrophic Epidermolysis Bullosa (COL	7A1, Golden Retriever Variant)	Clear
Early Bilateral Deafness (LOXHD1 Exon	38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EOAD (EPS	8L2 Deletion, Rhodesian Ridgeback Variant) Clear
🔗 Early Onset Cerebellar Ataxia (SEL1L, Fi	innish Hound Variant)	Clear
🔗 Ehlers Danlos (ADAMTS2, Doberman Pi	nscher Variant)	Clear

TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
Ehlers-Danlos Syndrome (EDS) (COL5A1, Lab	orador Retriever Variant)	Clear
🔗 Enamel Hypoplasia (ENAM Deletion, Italian G	reyhound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM SNP, Parson Russe	ell Terrier Variant)	Clear
Episodic Falling Syndrome (BCAN)		Clear
Exercise-Induced Collapse, EIC (DNM1)		Clear
Sactor VII Deficiency (F7 Exon 5)		Clear
Sactor XI Deficiency (F11 Exon 7, Kerry Blue Te	errier Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 3, Cocke	er Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 30, Engl	ish Springer Spaniel Variant)	Clear
🔗 Fanconi Syndrome (FAN1, Basenji Variant)		Clear
Fetal-Onset Neonatal Neuroaxonal Dystrophy	y (MFN2, Giant Schnauzer Variant)	Clear
🔗 Glanzmann's Thrombasthenia Type I (ITGA2B	Exon 13, Great Pyrenees Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA2B	Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe disease	e (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Von Gierk	e Disease, GSD IA (G6PC1, German Pinscho	er Variant) Clear
Glycogen Storage Disease Type IA, Von Gierk	e Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type IIIA, GSD IIIA	(AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type VII, Phosphor and English Springer Spaniel Variant)	fructokinase Deficiency, PFK Deficiency (Pf	FKM, Whippet Clear

DNA Test Report	Test Date: July 23rd, 2024 embk.me	e/texomasrscaptainmarble
OTHER RESULTS		
Glycogen storage disease Type VII, Pho Wachtelhund Variant)	sphofructokinase Deficiency, PFK Deficiency (PFKM,	Clear
GM1 Gangliosidosis (GLB1 Exon 2, Portu	uguese Water Dog Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, Shit	ba Inu Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, Alas	skan Husky Variant)	Clear
GM2 Gangliosidosis (HEXA, Japanese C	hin Variant)	Clear
Golden Retriever Progressive Retinal At	trophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal At	trophy 2, GR-PRA2 (TTC8)	Clear
Goniodysgenesis and Glaucoma, Pectin	nate Ligament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, German Shep	bherd Variant 1)	Clear
Hemophilia A (F8 Exon 1, German Shept	nerd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant	t)	Clear
Hemophilia B (F9 Exon 7, Terrier Variant)	Clear
Hemophilia B (F9 Exon 7, Rhodesian Ric	lgeback Variant)	Clear
Hereditary Ataxia (PNPLA8, Australian S	hepherd Variant)	Clear
Hereditary Ataxia, Cerebellar Degenerat	tion (RAB24, Old English Sheepdog and Gordon Setter Variant)) Clear
Hereditary Cataracts (HSF4 Exon 9, Aus	tralian Shepherd Variant)	Clear
Hereditary Cataracts (FYCO1, Wirehaire	d Pointing Griffon Variant)	Clear
Hereditary Cerebellar Ataxia (SELENOP,	Belgian Shepherd Variant)	Clear

TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
Hereditary Footpad Hyperkerator	sis (FAM83G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkerator	sis (DSG1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H2 Intron 4, Greyhound Variant)	Clear
🔗 Hereditary Nasal Parakeratosis, H	HNPK (SUV39H2)	Clear
Hereditary Vitamin D-Resistant F	Rickets (VDR)	Clear
🔗 Hypocatalasia, Acatalasemia (CA	T)	Clear
Hypomyelination and Tremors (F	NIP2, Weimaraner Variant)	Clear
🔗 Hypophosphatasia (ALPL Exon 9	, Karelian Bear Dog Variant)	Clear
🔗 Ichthyosis (NIPAL4, American Bu	Illdog Variant)	Clear
⊘ Ichthyosis (ASPRV1 Exon 2, Gern	nan Shepherd Variant)	Clear
🚫 Ichthyosis (SLC27A4, Great Dane	e Variant)	Clear
🚫 Ichthyosis, Epidermolytic Hyperk	keratosis (KRT10, Terrier Variant)	Clear
O Ichthyosis, ICH1 (PNPLA1, Golder	n Retriever Variant)	Clear
⊘ Ichthyosis, ICH2 (ABHD5, Golden	n Retriever Variant)	Clear
⊘ Inflammatory Myopathy (SLC25A)	12)	Clear
⊘ Inherited Myopathy of Great Dan	es (BIN1)	Clear
Inherited Selected Cobalamin M	alabsorption with Proteinuria (CUBN, Komondor Variant)	Clear
Intestinal Lipid Malabsorption (A	CSL5, Australian Kelpie)	Clear

TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
🧭 Junctional Epidermolysis Bullosa (LAMA3 Exc	on 66, Australian Cattle Dog Variant)	Clear
⊘ Junctional Epidermolysis Bullosa (LAMB3 Exc	on 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Juvenile Laryngeal Paralysis and Polyneuropa	athy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)		Clear
🔗 L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH	, Staffordshire Bull Terrier Variant)	Clear
Lagotto Storage Disease (ATG4D)		Clear
Laryngeal Paralysis (RAPGEF6, Miniature Bull	Terrier Variant)	Clear
🔗 Laryngeal Paralysis (CNTNAP1, Leonberger, S	aint Bernard, and Labrador Retriever varian	t) Clear
Late Onset Spinocerebellar Ataxia (CAPN1)		Clear
Late-Onset Neuronal Ceroid Lipofuscinosis, N	ICL 12 (ATP13A2, Australian Cattle Dog Vari	ant) Clear
Leonberger Polyneuropathy 1 (LPN1, ARHGEF	10)	Clear
Leonberger Polyneuropathy 2 (GJA9)		Clear
Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, Standard So	chnauzer Variant)	Clear
🧭 Ligneous Membranitis, LM (PLG)		Clear
SGCD, Bosto Limb Girdle Muscular Dystrophy (SGCD, Bosto	on Terrier Variant)	Clear
⊘ Limb-Girdle Muscular Dystrophy 2D (SGCA E)	kon 3, Miniature Dachshund Variant)	Clear

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
O Long QT Syndrome (KCNQ1)		Clear
Uundehund Syndrome (LEPRE)	EL1)	Clear
Macular Corneal Dystrophy, N	1CD (CHST6)	Clear
🧭 Malignant Hyperthermia (RYR	?1)	Clear
May-Hegglin Anomaly (MYH9)	Clear
Medium-Chain Acyl-CoA Deh Variant)	ydrogenase Deficiency, MCADD (ACADM, Cavalier King	g Charles Spaniel Clear
Methemoglobinemia (CYB5R	3, Pit Bull Terrier Variant)	Clear
Methemoglobinemia (CYB5R	3)	Clear
O Microphthalmia (RBP4 Exon 2	2, Soft Coated Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, S	Sanfilippo Syndrome Type B, MPS IIIB (NAGLU, Schippe	erke Variant) Clear
 Mucopolysaccharidosis Type Variant) 	IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon	n 6, Dachshund Clear
Mucopolysaccharidosis Type Huntaway Variant)	IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon	n 6, New Zealand Clear
Mucopolysaccharidosis Type Variant)	VI, Maroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5,	Miniature Pinscher Clear
Mucopolysaccharidosis Type	VII, Sly Syndrome, MPS VII (GUSB Exon 3, German She	epherd Variant) Clear
Mucopolysaccharidosis Type	VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasi	ileiro Variant) Clear
Multiple Drug Sensitivity (ABC	CB1)	Clear
Muscular Dystrophy (DMD, Ca	avalier King Charles Spaniel Variant 1)	Clear
Muscular Dystrophy (DMD, Go	olden Retriever Variant)	Clear

TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
Muscular Dystrophy-Dystroglycanopa	athy (LARGE1, Labrador Retriever Variant)	Clear
Musladin-Lueke Syndrome, MLS (ADA	AMTSL2)	Clear
🔗 Myasthenia Gravis-Like Syndrome (C	HRNE, Heideterrier Variant)	Clear
Myotonia Congenita (CLCN1 Exon 23	, Australian Cattle Dog Variant)	Clear
Myotonia Congenita (CLCN1 Exon 19,	Labrador Retriever Variant)	Clear
Myotonia Congenita (CLCN1 Exon 7, N	Miniature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachshi	und Variant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberr	man Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrad	lor Retriever Variant)	Clear
Nemaline Myopathy (NEB, American	Bulldog Variant)	Clear
Neonatal Cerebellar Cortical Degene	ration (SPTBN2, Beagle Variant)	Clear
Neonatal Interstitial Lung Disease (L/	AMP3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11,	Rottweiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR:	2, Spanish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NC	L 1 (PPT1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, N	CL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NC	EL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NC	CL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear

TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN	15 Exon 4 Deletion, Golden Retriever Variant)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLI	N6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFS	SD8, Chihuahua and Chinese Crested Variant) Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN	N8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN	N8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN	18 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscinosis, Cerebellar A Variant) 	taxia, NCL4A (ARSG Exon 2, American Staffor	dshire Terrier Clear
Oculocutaneous Albinism, OCA (SLC45A2 Ex	on 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2, Sr	nall Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL9A2, Samoyed	d Variant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagle V	ariant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dachsl	nund Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golden R	etriever Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)		Clear
Pachyonychia Congenita (KRT16, Dogue de E	Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)		Clear
Persistent Mullerian Duct Syndrome, PMDS (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Karelian	Bear Dog Variant)	Clear

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
Platelet Factor X Receptor De	eficiency, Scott Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PK	(D (PKD1)	Clear
Pompe's Disease (GAA, Finnis)	sh and Swedish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLK	B1 Exon 8)	Clear
Primary Ciliary Dyskinesia, PC	CD (NME5, Alaskan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PC	CD (STK36, Australian Shepherd Variant)	Clear
Primary Ciliary Dyskinesia, PC	CD (CCDC39 Exon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)	1	Clear
Primary Lens Luxation (ADAM)	ITS17)	Clear
Primary Open Angle Glaucom	a (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucom	a (ADAMTS10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucom	a (ADAMTS10 Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucom Variant) 	a and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-	Pei Clear
Progressive Retinal Atrophy (SAG)	Clear
Progressive Retinal Atrophy ((IFT122 Exon 26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy 5	5, PRA5 (NECAP1 Exon 6, Giant Schnauzer Variant)	Clear
Progressive Retinal Atrophy, B	Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Vari	iant) Clear
Progressive Retinal Atrophy, 0	CNGA (CNGA1 Exon 9)	Clear

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
Progressive Retinal Atrophy, crd1 (PDE6B, Am	erican Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RPG	RIP1)	Clear
Progressive Retinal Atrophy, PRA1 (CNGB1)		Clear
Progressive Retinal Atrophy, PRA3 (FAM161A)		Clear
Progressive Retinal Atrophy, rcd1 (PDE6B Exo	n 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (PDE6A)		Clear
Proportionate Dwarfism (GH1 Exon 5, Chihuah	ua Variant)	Clear
Protein Losing Nephropathy, PLN (NPHS1)		Clear
Pyruvate Dehydrogenase Deficiency (PDP1, S	paniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 5, Bas	senji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Bea	gle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 10, Te	rrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Lab	rador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Pug	Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmonary Disease, F	IPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and Nodular Dern	natofibrosis (FLCN Exon 7)	Clear
Retina Dysplasia and/or Optic Nerve Hypopla	sia (SIX6 Exon 1, Golden Retriever Variant)	Clear

TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
Sensory Neuropathy (FAM134B, Border Collie	Variant)	Clear
Severe Combined Immunodeficiency, SCID (F	PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficiency, SCID (F	RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, English Spri	nger Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease, SPAID, S	har-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11A2, Labrador	Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, Chesapeake E	Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A, Alpine Dachs	bracke Variant)	Clear
Spinocerebellar Ataxia with Myokymia and/o	r Seizures (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ataxia	1 (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ataxia	2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon 28, Labrador	Retriever Variant)	Clear
Succinic Semialdehyde Dehydrogenase Defic	ciency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, American B	Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, Basset Hor	und Variant)	Clear
🔗 Thrombopathia (RASGRP1 Exon 8, Landseer \	/ariant)	Clear
Trapped Neutrophil Syndrome, TNS (VPS13B)		Clear
Illrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant	Clear

TEXOMA'S RS CAPTAIN MARBLE

DNA Test Report	Test Date: July 23rd, 2024	embk.me/texomasrscaptainmarble
OTHER RESULTS		
Ullrich-like Congenital Musc	ular Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Vest	tibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
⊘ Urate Kidney & Bladder Stone	es (SLC2A9)	Clear
🔗 Von Willebrand Disease Type	e II, Type II vWD (VWF, Pointer Variant)	Clear
Von Willebrand Disease Type	e III, Type III vWD (VWF Exon 4, Terrier Variant)	Clear
🔗 Von Willebrand Disease Type	e III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhond	lje Variant) Clear
O Von Willebrand Disease Type	e III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
X-Linked Hereditary Nephrop	oathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopat	hy (MTM1, Labrador Retriever Variant)	Clear
⊘ X-Linked Progressive Retinal	I Atrophy 1, XL-PRA1 (RPGR)	Clear
⊘ X-linked Severe Combined In	nmunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Var	iant) Clear
⊘ X-linked Severe Combined In	nmunodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
🔗 Xanthine Urolithiasis (XDH, M	fixed Breed Variant)	Clear
🧭 β-Mannosidosis (MANBA Exc	on 16, Mixed-Breed Variant)	Clear
Mast Cell Tumor		No result

DNA Test Report

Test Date: July 23rd, 2024

embk.me/texomasrscaptainmarble

HEALTH REPORT

Increased risk result

Intervertebral Disc Disease (Type I)

Texoma's RS Captain Marble inherited one copy of the variant we tested for Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD Captain is at increased risk for Type I IVDD

How to interpret this result

Captain has one copy of an FGF4 retrogene on chromosome 12. In some breeds such as Beagles, Cocker Spaniels, and Dachshunds (among others) this variant is found in nearly all dogs. While those breeds are known to have an elevated risk of IVDD, many dogs in those breeds never develop IVDD. For mixed breed dogs and purebreds of other breeds where this variant is not as common, risk for Type I IVDD is greater for individuals with this variant than for similar dogs.

What is Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD?

Type I Intervertebral Disc Disease (IVDD) is a back/spine issue that refers to a health condition affecting the discs that act as cushions between vertebrae. With Type I IVDD, affected dogs can have a disc event where it ruptures or herniates towards the spinal cord. This pressure on the spinal cord causes neurologic signs which can range from a wobbly gait to impairment of movement. Chondrodystrophy (CDDY) refers to the relative proportion between a dog's legs and body, wherein the legs are shorter and the body longer. There are multiple different variants that can cause a markedly chondrodystrophic appearance as observed in Dachshunds and Corgis. However, this particular variant is the only one known to also increase the risk for IVDD.

When signs & symptoms develop in affected dogs

Signs of CDDY are recognized in puppies as it affects body shape. IVDD is usually first recognized in adult dogs, with breed specific differences in age of onset.

Signs & symptoms

Research indicates that dogs with one or two copies of this variant have a similar risk of developing IVDD. However, there are some breeds (e.g. Beagles and Cocker Spaniels, among others) where this variant has been passed down to nearly all dogs of the breed and most do not show overt clinical signs of the disorder. This suggests that there are other genetic and environmental factors (such as weight, mobility, and family history) that contribute to an individual dog's risk of developing clinical IVDD. Signs of IVDD include neck or back pain, a change in your dog's walking pattern (including dragging of the hind limbs), and paralysis. These signs can be mild to severe, and if your dog starts exhibiting these signs, you should schedule an appointment with your veterinarian for a diagnosis.

How vets diagnose this condition

For CDDY, dogs with one copy of this variant may have mild proportional differences in their leg length. Dogs with two copies of this variant will often have visually longer bodies and shorter legs. For IVDD, a neurological exam will be performed on any dog showing suspicious signs. Based on the result of this exam, radiographs to detect the presence of calcified discs or advanced imaging (MRI/CT) to detect a disc rupture may be recommended.

How this condition is treated

DNA Test Report

Test Date: July 23rd, 2024

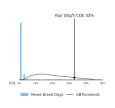
embk.me/texomasrscaptainmarble

INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding

MHC Class II - DLA DRB1


Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein

involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog

breeds, but these findings have yet to be scientifically validated.

33%

RESULT

No Diversity

How common is this amount of diversity in mixed breed dogs:

No Diversity

How common is this amount of diversity in mixed breed dogs:

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.